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For comparison of whole-genome (genic ! nongenic) sequences,
multiple sequence alignment of a few selected genes is not appro-
priate. One approach is to use an alignment-free method in which
feature (or l-mer) frequency profiles (FFP) of whole genomes are used
for comparison—a variation of a text or book comparison method,
using word frequency profiles. In this approach it is critical to identify
the optimal resolution range of l-mers for the given set of genomes
compared. The optimum FFP method is applicable for comparing
whole genomes or large genomic regions even when there are no
common genes with high homology. We outline the method in 3
stages: (i) We first show how the optimal resolution range can be
determined with English books which have been transformed into
long character strings by removing all punctuation and spaces. (ii)
Next, we test the robustness of the optimized FFP method at the
nucleotide level, using a mutation model with a wide range of base
substitutions and rearrangements. (iii) Finally, to illustrate the utility
of the method, phylogenies are reconstructed from concatenated
mammalian intronic genomes; the FFP derived intronic genome to-
pologies for each l within the optimal range are all very similar. The
topology agrees with the established mammalian phylogeny reveal-
ing that intron regions contain a similar level of phylogenic signal as
do coding regions.

mammalian genome phylogeny ! whole-genome comparison !
whole-genome phylogeny ! whole-intron phylogeny

The comparison of 2 closely related genomes at the base-by-base
nucleotide sequence level is accomplished by sequence align-

ment. However, because species diverge extensively over time,
insertions/deletions and genomic rearrangements make straightfor-
ward sequence alignment unreliable or impossible. This difficulty is
typically overcome by 1 of 2 methods. The first involves extracting
a common subset of genes (coding sequences) shared by all of the
species compared, then building a multiple sequence alignment
(MSA) for each gene, and finally concatenating each alignment into
a super MSA (1). The MSA and an appropriate base-substitution
model are used to calculate similarity scores. The second method
is best described as gene profiling, where the occurrence of each
gene in a dictionary of genes is counted, forming a gene presence/
absence profile. The relative frequency difference between ge-
nomes from their gene profiles is used to derive a similarity score
(2). Both methods rely on the correct definition and selection of
common genes to be compared, and significant homology among
aligned gene sequences.

If, however, the genomes do not share an alignable set of
common genes, the alignment-free method is the only option of
choice at present. Also, these methods of comparison strictly focus
on comparing the coding (coding for protein, and functional RNA)
portions of genomes, which can amount to as little as 1% of the
genomic sequence in humans (3). As for the noncoding sequence
of the genome (the other 99%), much of its function is unknown,
but still much of this portion is indeed transcribed. The ENCODE
project showed that at least 93% of analyzed human genome
nucleotides were transcribed into RNA in various different cell
types (4). The next era in genomics will necessarily require methods
specifically developed for data mining and sequence comparison

within the noncoding realm of genomic sequence. Clearly it would
be useful to compare whole genomes (coding and noncoding
regions), using a method that is independent of a specific gene set,
and can analyze nongenic regions as well. Here, we present an
alignment-free method that can be used for comparing entire
genomes or genomic regions that may be distantly related, have
undergone significant rearrangement and do not share a common
set of genes (such as intronic, regulatory or nongenic regions).

The method presented here is a variation of the text comparison
method (5), where the ‘‘distance’’ between word frequency profiles
of 2 texts is taken as a measure of the dissimilarity between the 2
texts. However, since there are no ‘‘words’’ in the long string of bases
that form genome sequences, we use differences in relative l-mer
frequencies to calculate distance scores. The first usage of l-mer
counts for biological sequence comparison was implemented by
Blaisdell (6) and more recent developments in alignment-free
comparison have been reviewed by Vinga and Almeida (7). In our
method, the frequency information for all of the possible features
(l-mers) of a given length is assembled into a feature frequency
profile (FFP). In this approach, the most important parameter is the
length or resolution of the features. The selection of the optimal
range of feature lengths to use for genome comparison has not been
fully addressed, and the principal aim of this study is directed toward
identifying this optimal range.

This study is structured into 3 parts. (i) We first investigated how
one can determine the optimal resolution range for the comparison
of a set of delimiter-stripped English books. By delimiter-stripped,
we mean that each text has been stripped of delimiting punctuation
marks and white-space characters and then combined into a single
long string of alphabet characters. (ii) Next we evaluate the limit of
the method for accurately reconstructing phylogenies, using a test
genome sequence and modeling divergence with high base substi-
tution rates and frequent sequence rearrangements. These simu-
lations use very high alteration rates to test the robustness of the
FFP method in situations where alignment based procedures may
not yield sufficient enough distance information for accurate phy-
logenic reconstruction. We highlight the relationship between
phylogenic reconstruction accuracy and the optimal resolution
range. (iii) Finally we apply the FFP method within the expected
optimal resolution range to the investigation of the evolutionary
phylogenic signal embedded within mammalian intronic regions.
We find a high level of similarity between the phylogeny obtained
from the noncoding intron FPP comparisons and the established
gene-based consensus mammalian phylogeny.

Results
It was our desire to create a method where the choice of resolution
was not an ad hoc decision based on a subjective ‘‘best’’ tree
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topology. In our methodology, we present a rational criterion for
identifying the optimum range of resolution from the vocabulary
feature profiles and Cummulative Relative Entroy (CRE) profiles
that are derived from the text character strings or genome se-
quences themselves (see Materials and Methods). Within this opti-
mum resolution range, trees reconstructed from different l are
topologically consistent with each other.

Optimum Resolution Range for Character Strings. We first derive the
optimal resolution range, using the delimiter-stripped English
books. The classifications of these books are obvious and provide
an intuitive validation of the method. In literature, similar books
(similar in subject matter, time period or author) usually tend to
have similar diction or vocabulary frequency. To simulate genome
sequences, all spaces and punctuation marks are removed, which
transforms each book into a long string of characters. A character
string, such as this, can be divided into overlapping features, or
l-mers of a given resolution, l, and the frequency of each kind of
feature is counted via a sliding frame implementation. For each
character string the frequency information for all of the possible
features of a given length is assembled into a feature frequency
profile (FFP). These FFPs are then compared with a divergence
measure, known as the Jensen–Shannon Divergence—which indi-
cates the relative dissimilarity between texts.

To illustrate FFP text comparison, Fig. 1A shows a neighbor
joining tree, which is constructed from FFP distances, each FFP
representing the features from one of the e-books. The corpus of
books is sampled from several authors and multiple genres/
categories (e.g., juvenile fiction, science fiction, etc.). In this exam-
ple, the FFP method effectively classifies the set of books by subject
matter and authorship. Of course, the books are not related to each
other by an evolutionary divergence, however, books written by the
same author within the same genre tend to share more common
features. Similarities in FFP profiles are a result of likeness in
vocabulary and diction (i.e., word order) associated with (among

many factors) a specific subject matter or topic, reading level and
the stylistic preferences of specific authors.

The tree in the above example is constructed specifically with a
single feature length (l ! 9). However, there are many such trees
that can be constructed from different resolutions l. For FFPs
derived from a character string, it is possible to determine, a priori,
the range of resolutions that are best for representing the string for
classification purpose. We have through simulation and observation
deduced that this optimal range lies between 2 limits that can be
calculated from the character strings themselves. In the children’s
book Peter Pan, for example, the lower limit (Fig. 1B) is determined
by counting the number of vocabulary features (features that occur
more than once) in the character string of the book for each l. The
peak in this vocabulary feature profile represents the maximum
number of different features that can be found in the string, and it
occurs at l ! lHmax. These features are more likely to distinguish this
string from other strings. Thus, lHmax defines the lower limit of the
range of optimal resolution for classification purpose. In general,
lHmax can be approximated by Eq. 5 for a genome sequence, without
empirically determining the peak from the vocabulary feature
profile. lHmax changes slowly (Fig. 2)—the value increase by 1 when
the genome length increases by a factor of 4.

The value lCREmin (Fig. 1C), the derivation of which is explained
further in Materials and Methods, defines the upper limit of the
optimal range for a character string. The upper limit is the length
at which the frequencies of all longer features can be accurately
estimated using an l-2 Markov estimator. In the case for Peter Pan
(a string consisting of "172,000 characters), the lower limit is lHmax
! 6 and the upper limit is lCREmin ! 15. For the books tested here
lHmax has a value between 5 and 8 and lCREmin between 15 and 17.
The trees constructed using FFPs for l values within the overlapping
ranges of l ! 9–15 tend to converge upon a single common
topology. Also, within this range, statistical resampling tests such as
bootstrapping and jackknifing can show that the best supported tree
topology largely remains the same for all resolutions within the
optimal range. These tests may also be used to assign support to
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Fig. 1. Text comparison with FFP. (A) An example of text comparison using the FFP method on English books, each converted into a long character string by removing
all punctuation and spaces between words. Books of several different categories/genres are compared. At least 2 books are shown for most authors. High frequency
stop features were removed and the feature resolution used is l ! 9. (B) Lower limit. Using the children’s book Peter Pan as an example, the lower limit of resolution
is determined by lHmax. (C) Upper limit. Upper limit is determined by lCREmin.
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specific clades and groupings. For the rat mitochondrial genome (a
string of 16,646 nt), which we use as a test sequence (see below), the
limits are lHmax ! 7 and lCREmin ! 14.

Optimal Resolution Varies with Genome Length. The optimum range
of l for a given genome lies between lHmax and lCREmin. However,
because both the upper and lower limit of l are primarily functions
of genome length, finding a best l for overlapping ranges can be
difficult when comparing genomes with large differences in length.
Take for example, the l-mer vocabulary profiles of human chro-
mosome 1 (230 Mbp) and the human mitochondrial genome (16
Kbp), which represent an extreme contrast in both total genome
length and lHmax. The mitochondrion has lHmax ! 7, whereas Chr 1
has lHmax ! 14. This substantial difference in lHmax creates a
problem finding a common (overlapping) range of l for comparison
between genomes of significantly different lengths. However, this is
not a serious problem for small genomes, which are approximately
the same order of size such as prokaryotes, lower order eukaryotes
and viruses.

Robustness of FFP Method with a Test Genome. To test the limit of
applicability the FFP method, we used a rat mitochondrial genome
as a test sequence. The shuffle model (see Materials and Methods)
was used to determine the best l for tree reconstruction. Fig. 3A
indicates that trees predicted from short l-mers are unreliable and
poorly reconstruct the reference tree. The performance of FFP was
tested under widely varying base substitution rates. There is a clear
dependence between tree distance and substitution rate. For low
mutation rates, longer words perform better than features at or near
lHmax ! 7. However, trees constructed with the 10% substitution
rate show that there is an optimal l-mer range (l ! 10–14), and that
longer l-mers (l # 14) less accurately predict the reference tree. In
general, the more conserved the sequences, the higher the l that
may be safely used.

Block-FFP Allows for Comparisons of Widely Different Length Ge-
nomes. As mentioned earlier, the value of lHmax increases by 1 for
every 4-fold genome length increase (Eq. 10). For comparison of
genomes with much greater length differences, we propose to
divide (for any pairwise comparison) the larger genome into blocks,
which are of equivalent length to the smaller genome. This stan-
dardizes the comparison over a single sequence length, and the
blocks of the larger genome have similar l-mer vocabulary profiles
as the smaller genome, thus the same lHmax. A reasonable decision
criteria for choosing block comparisons is to evaluate whether there
is a relative shift in lHmax between compared genomes.

Block-FFP Out-Performs Other Methods for Comparing Different
Length Genomes. The excision model (see Materials and Methods)
population was used to test the effectiveness of block-FFP for

standardizing genome comparisons (Fig. 3B). In these tests, ge-
nomes differ in length by as much as 8-fold. For l ! 1–10 both the
blocked and full-length FFP methods are similarly poor in recon-
structive ability. In the full-length method the l-mer frequencies for
the entire sequences were compared, rather than equal length
blocks. However, for l ! 11–20 blocked comparisons produce
significantly better reference tree reconstructions. Furthermore,
the block-FFP method out-performs the ability of the ACS and
Gencompress methods (Fig. 4) for comparing genomes with large
length differences.

Example: Intronic Genome Comparison. We have tested the applica-
bility of the FFP method for mining phylogenetic information
hidden in the intronic regions of whole genomes. All of the known
or predicted intron regions were extracted from the deep-coverage
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(#10$) mammalian genomes and concatenated introns to form an
‘intronic genome.’ Features of lengths 1 to 20 were used to
reconstruct trees. As expected from the intronic genome sizes
(lHmax " 14 for Opossum % the largest) the topologies begin to
converge at l ! 12 and are fully converged (i.e., the topology of l
was equal to l & 1, and all subsequent lengths) at l ! 16 (Fig. 6B).
Trees from l ! 16 to 24 have identical topologies, which confirms
the location of the optimal resolution range. The FFP-based

topology (Fig. 6A with l ! 18) of the ‘‘intronic genome’’ closely
reflects the accepted evolutionary history, which has been observed
by others, using coding-sequence-based alignment techniques (8).
All internal nodes for l # 16 have high jackknife support values
(#0.95). This is a particularly interesting result, because it indicates
that the intron region contains a similar level of phylogenic signal
as do coding exon sequences.

Discussion
Our method works well over a large range in genome size, if the
optimum resolution range is chosen considering several key points
that we summarize here.

Y The FFP method is particularly useful for comparing whole
genomes or genomic regions that have low homology or do not
share highly conserved common genes. Large ensembles of
introns such as our ‘intronic genomes’, fall into this category, and
can be effectively compared using our method.

Y The optimum resolution range for a set of genomes can be
identified from the overlapping region of the ranges defined by
lHmax and lCREmin for each individual genome. From our expe-
rience, both with these simulations and with real genomes, only
l-mers of lengths greater than the lower boundary of the optimal
resolution range should be used for comparison. In the simulated
trees, the genome alteration rate also affects the reconstructive
ability of different l values. However, even with high alteration
rates, the optimum resolution still lies within a predictable range.
We found minimal improvement by using especially long l
beyond the upper boundary of the optimal range. More impor-
tantly, the inclusion of much longer l, beyond the upper bound
for more divergent genomes can significantly worsen the pre-
dicted tree topology when the compared FFPs of whole genomes
are highly divergent, as are the cases with viral or mammalian
genomes. This is probably because the features with l # lHmax are
mostly populated by those that occur only once among all
genomes compared.

Y The values of lHmax and lCREmin for a given genome are largely
dependant on the genome length. Thus, the significance of length
differences among compared genomes should be carefully con-
sidered. Length differences only become significant when #4-
fold when nucleotide sequences are considered, or 20-fold in the
case of protein sequences. In these cases block-FFP should be
considered. Length differences of lesser magnitude are unlikely
to necessitate block-FFP.

This method should prove useful for group assignment of new
genomes of low homology, for comparing metagenomes, incom-
plete and fragmentary genomes, and for mining nongenic regions
of whole genomes.

Materials and Methods
The FFP alignment-free method consists of 3 major steps: (i) testing whether the
lengths of the shortest and the longest genomes differ by more than 4-fold, (ii)
determining the optimal resolution range for genomes compared and (iii) com-
paring FFPs, using the Jensen–Shannon (JS) Divergence. For whole-genome se-
quences, our method was validated by evaluating its ability to regenerate the
topology of a reference tree. For comparing phylogenies, we compared UPGMA
(9) trees produced from JS divergence information to the reference tree, using
the phylip package (10). Later examples use the Neighbor Joining method (11).
The advantage of using this simulated data is that the topology of the reference
tree is known with absolute certainty. This method of validation is similar to a
study by Hohl et al. (12). To compare FFP tree topologies to the reference tree, we
used the symmetric tree distance or Robinson–Foulds distance (13), as imple-
mented in the treedist program of phylip. This distance is equal to the minimum
number of operations, consisting of merging or splitting nodes, necessary to
transform one tree into the other. For our purposes the results based on RF
distance were almost identical to those based on another distance metric, the
maximum agreement subtree (14). The details of the key processes in the FFP
method are described below:

Are genome lengths > 4 fold?

TrueFalse

Use unblocked-FFP Use block-FFP

m = the sequence length of
smallest genome 

Genomes

Find upper and lower 
resolution limits

If genomes size > 15 Mbp, use a reduced alphabet.

Calculate all pair-wise 
distances with Eq. 13.

Count l-mer features
in each genome

Count l-mer features 
in each genome block

Find optimal 
range of l

Calculate all pair-wise 
distances with Eq. 4.

Construct a Distance Matrix

Build Tree

Fig. 5. Flow chart of the optimal FFP method.

Fig. 6. FFP comparison of intronic genomes. (A) Concatenated intronic regions
of mammals were compared using FFP and RY coding. The tree was constructed
with neighbor joining, low complexity, high frequency filtering and l ! 18. Nodes
indicated have '1.0 jackknife support. Scale indicates Jensen–Shannon diver-
gence length. (B) Topological convergence. A neighbor joining tree was con-
structed from words of length l ! 1–24. The topology of each tree reconstructed
from words of length l is compared with trees from l-1. All trees converge to the
same topology above l ! 16.
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Feature Frequency Profiles (FFP). To count the frequencies of each feature in the
genome, a sliding window of length l is run through the sequence from position
1 to n % l & 1. Large genomes, which consist of multiple chromosomes, are
represented by a collection of assembled chromosomes and others are just a collec-
tion of unassembled contigs. When counting, l-mers continue over the whole ge-
nome, but the sliding window is not allowed to span over sequencing gaps. The
counts are tabulated in the vector Cl for all possible features of length l,

Cl " # cl,1, . . . , cl,K $ [1]

where K, the number of all possible features, is 4l and 4 is the alphabet size.
The raw frequency counts are normalized to form a probability distribution
vector or FFP,

Fl " Cl"#
i

c l,i [2]

giving the relative abundance of each l-mer. This normalization removes small
genome length differences as a factor in the comparison, however, for larger
differences, see Block-FFP.

Genome Comparison with Jensen–Shannon Divergence. The distance between
2 probability vectors Pl and Ql is calculated using the Jensen–Shannon (JS)
Divergence,

JSl(Pl, Ql) "
1
2 KL(Pl, Ml) %

1
2 KL(Ql, Ml) [3]

where Mi ! (Pi & Qi)/2 and KL is the Kullback-Leibler divergence,

KL(Pl, Ml) " #
i!1

K

pl,i log2
pl,i

ml,i
[4]

The JS divergence is a convenient divergence measure for our purpose because it
is symmetric and bounded between 0 and 1. Note, that the JS divergence is not
strictly a metric distance as it does not always satisfy triangle inequality. See Lin
(15) for a further description.

Lower Limit of Resolution: Vocabulary Features and lHmax. Reliable resolutions
always fall into a particular range of an l-mer vocabulary feature profile, H.
Vocabulary features are those features occurring more than once in a genome.
The profile, H, is constructed by counting the number of vocabulary features for
each l. The location of the peak in the distribution, i.e., the l with the largest
vocabulary, is related to the sequence length, n. The l with maximum H, lHmax is
empirically determined but may be closely approximated by,

lH max " log4(n) [5]

where 4 is the alphabet size. Fig. 2 shows a fit of eq. 5 to genome sequence data.
We have observed empirically and through our validation tests that reliable tree
topologies are typically obtained with l-mer resolutions where l#lHmax whereas
lengths below lHmax yield unreliable trees.

Upper Limit of Resolution: Cumulative Relative Entropy (CRE). The upper limit of
resolution can be empirically determined by a criterion that the tree topology for
feature length l is equal to that of l & 1, i.e., tree topologies converge. This
convergence criterion can be used to find the upper limit for large genomes (such
as the mammalian intron genomes) or in cases where not computationally
prohibitive, theupper limitcanalsobederivedbyusingtheconceptofcumulative
relative entropy. Briefly, we can estimate the FFP for length, l, from the FFPs of l-1
and l-2, using an l-2 Markov chain model. The expected frequency, f̂l, of an l-mer
given the prior knowledge of the FFP probability distribution of l-1 and l-2 is,

f̂a1a2 . . . al "
fa2a3 . . . al fa1a2 . . . al%1

fa2a3 . . . al%1
[6]

where fa1a2 . . . al is the frequency of a l-mer formed from the letters a1a2 . . . al.
An expected FFP, F̂l, can be found from Fl-1 and Fl-2. Further, F̂l and Fl-1can be used
to find F̂l&1, and thus all F̂l&k up to infinite k can be found by iteratively applying
Eq. 6 to find the next longest expected FFP.

To measure how close the expected frequency is to the observed frequency for
the entire probability distribution, we compute the relative entropy (eq 4):

KL(F̂l, Fl) [7]

We define cumulative relative entropy (CRE) at l as the sum of relative entropy
from l to infinity (but in practice one can stop when KL " 0):

CRE(l) " #
i!1

*

!KL(F̂i, Fi) ! [8]

The CRE represents the accuracy of predicting FFPs for all lengths greater than or
equal to l, given the prior distributions Fl-1 and Fl-2. If a given sequence has zero
CRE at feature length l, then the FFPs Fl-1 and Fl-2 have all of the information
necessary to form longer features. When CRE approaches zero, this value of l
delineates the upper limit for use in genome comparison (see Fig. 1C). We
designate this point as lCREmin.

Constructing the Simulated Phylogenic Ancestry. The tests presented here were
specifically designed to test the limit of applicability for the FFP method. Thus,
high rates of substitution and rearrangement are used to push the divergence to
the point where sequence alignment is no longer useful for constructing phy-
logenies. The models below are not meant to realistically describe the mutational
processes occurring across short time spans. The models are based on an accel-
erated and exaggerated mode of genomic rearrangement so that significant
rearrangement and divergence will occur within 20 generations of computer
simulation. For computational expediency a short mitochondrial sequence is
chosen as a root ancestor test sequence. Two child genomes are copied from this
initial parent with an underlying genome alteration model.

We used 2 models: (i) shuffle and (ii) excision. The shuffle model involves 2
components: (i) rearrangement, a random excision and reinsertion of a sequence
fragment that occurs once per duplication and (ii) mutation, a random base
substitution that occurs at a fixed percentage rate. The Rattus norvegicus mito-
chondrion was used as the ancestor sequence and the excised fragment size can
be up to 0.1n in length (where n is the length of the genome sequence). After a
set of sequences is evolved, the result is a set of equal length sequences with a
known lineage.

Likewise, the excision model consists of 2 elements: (i) a random excision
without replacement, of a sequence fragment that occurs once per duplication
and (ii) mutation, random base substitution that occurs at 10% of base positions.
The root ancestor in this case is generated by randomly concatenating 25 mito-
chondrial sequences. The excision is the same length as above. In contrast to the
shuffle model, we obtain a set of divergent sequences with varying lengths. We
selected sets of sequences with as much as an 8-fold difference in length from the
smallest to largest descendant genome. These sets were used to validate the
effectiveness of block-FFP comparisons under extreme conditions.

A synthetic lineage with a known tree is created using one of the above
genome alteration models. However, for simplicity, we did not include any
selection process in effect during the simulation. Each child is set to have a 1 in 4
chance of going extinct and the parent generation at each level dies. Children are
produced up to the 20th generation. The ancestral history of the children at the
leaf nodes forms the reference tree topology. These reference trees were used to
validate our method.

Filtered Feature Sets and the Reduced Purine-Pyrimidine Alphabet. The use of
all possible l-mers for especially long genomes or especially long l has computer
memory allocation limitations, so feature filtering may be necessary. One effec-
tive form of l-mer filtering is to assume that some words are degenerate because
sequence evolution is indeed tolerant of many kinds of sequence substitutions.
For nucleotide sequences, the bases A and G (both purine bases), and C and T
(both pyrimidines) can form 2 equivalent classes R and Y. This reduced alphabet
is especially useful for comparing large genomes, because it substantially reduces
memory allocation requirements. Also, the R-Y alphabet has been shown to
improve phylogenies by removing the distorting effects of species specific bias in
base composition and bias in the third codon position (8, 16). A further reduction
can be accomplished by establishing equivalency between the reverse comple-
ment and its forward sequence. In validation tests, no filtering was applied and
the full 4 letter alphabet was used.

Removal of High Frequency and Low Complexity Features. The genomes of
higher order Eukaryotes contain a large fraction of sequence that is repetitive or
of low complexity, most often in nongenic or intergenic regions. The complexity
of a feature, Kf, is determined by comparing its size in bytes, before and after
lossless compression.

Kf " !s & scompress! [9]
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The compression is implemented using the gzip utility (gzip %9). For an example
of complexity values, the most and least complex features for l ! 18 have Kf of 16
and 5 respectively. Gencompress (21), a method developed for compression of
DNA sequences, was also tried, but gave approximately equal complexities for all
features of a given length because it is optimized to compress whole-genome
sequences, not features. The complexity of l-mers for a given l is normally
distributed, and one can choose only the most complex features, which are
generally of low frequency.

Also, high frequency features should be disregarded because they are usually
not sensitive to distinguishing different genomes, and these features tend to
dominate the Jensen–Shannon distance score. No complexity or high frequency
filtering was applied to the validation tests of the short sequences.

Block-FFP/Full-Length-FFP Distance Comparison. Full-length-FFP comparisons are
implemented using pairwise JS distances (Eq. 3). This method is best used on
approximately equal length sequences ('4-fold different). Genomes with large
differences in length can be compared effectively, using the block-FFP method.
Block comparisons are an absolute necessity when comparing genomes with
large length differences. A reasonable decision criterion for choosing block-FFP is
to evaluate whether there is a relative shift in lHmax between compared genomes.
According to Eq. 5 this is a length difference of,

nj"ni ! 4 [10]

where the genome length, nj, is greater than ni and 4 is the base alphabet size.
Note, for comparison of large chromosomes we have used a simplified 2-letter
alphabet. The block method is similar to that described by Wu et al. (17). When
sequences a and b are compared, each sequence is divided into m length blocks.
For a set of genomes the block size should be the size of the smallest genome. If
a genome is not evenly divisible by m then blocks overlap by n modulus m bases.
Sequence a and b have A and B numbers of blocks, respectively. The block
distance may be computed as,

D(al, bl) " $ 1
A #

i

A

min+JSl(ai, b1) , . . . , JSl(ai, bB),

% 1
B#

j

B

min+JSl(a1, bj) , . . . , JSl(aA, bj)]%"2

[11]

where ai and bj represent the FFPs derived from the blocks of sequences a and b,
and min is the minimum distance, among the set of distances. In this case JSl is the
distance between each block-to-block comparison. The block distance calculates
the average JS distance of the best matches between all pairs of sequence blocks.
Blocked FFPs are used when comparing genomes of diverse size.

Other Methods: Average Common Substring and Compression Based Distances.
We compared the FFP and block-FFP methods to 2 other alignment free methods.
The average common substring (ACS) distances were calculated as described by
Ulitsky et al. (18). ACS finds the average length of the longest substrings starting
at every sequence position that are shared between 2 sequences. A normalized
compression distance can be formed from the Kolmogorov complexity of a, Ka,
which is defined as the length of the smallest program that will produce the

output a (19, 20). Ka is approximated by finding the size of a after lossless
compression, ka. A sequence distance can be formed using the approximated k,

d(a, b) "
min(kab, kba) & min(ka, kb)

max(ka, kb)
[12]

where ka and kb are the compressed sizes of sequencea and b, and kab and kba are
the compressed sizes of the concatenated sequences. The software, Gencom-
press, is used as the lossless compression algorithm (21).

Text Comparison. The books used in the text example were obtained from the
Project Gutenberg database (www.gutenberg.org). E-text numbers used: 11, 12,
16,17,36,55,150,158,161,164,518,730,766,1301,1376,1656,1728,1932,2199,
2412, 2800, 4213, 5146, 8438, 10900, and 18857. Each text was preprocessed by
removing file headers, footers, title, chapter, author information and several
high frequency stop words: ‘‘and,’’ ‘‘the,’’ ‘‘a,’’ and ‘‘an.’’ All nonalphabetic
characters and spaces were deleted. Vocabulary feature and CRE profiles were
constructed, and the lower and upper limits were respectively, lHmax ! 6 and
lCREmin ! 15. Fig. 1 was constructed with Eq. 3 and l ! 9.

Mammalian Intronic Genome Comparison. To investigate the evolutionary in-
formation contained within intron sequences, all annotated and predicted in-
trons were extracted from the complete reference genomes of Human (Homo
sapiens), Chimpanzee (Pan troglodytes), Rhesus Monkey (Macaca mulatta),
Mouse (Mus musculus), Rat (Rattus norvegicus), Dog (Canis lupus familiaris),
Horse (Equus caballus), Cow (Bos taurus), Opossum (Monodelphis domesticus),
and Platypus (Ornithorhynchus anatinus). These genomes have the deepest
sequencing coverage (#10$). Intron sequences were extracted from the gen-
bank assembly records found at National Center for Biotechnology Information
(ftp://ftp.ncbi.nlm.nih.gov/genomes), using the base pair positions specified by
each genbank CDS field. All introns from a species were concatenated together
in 1 intron genome file with an x character separating each intron. The separator
prevents extracted features from spanning 2 introns. It is worth noting that the
GenBank annotations are known to be incomplete, so our genome partitions will
necessarily misallocate a number of un-annotated or poorly predicted introns.
The relative sizes of all of the intronic genomes are approximately similar (within
4-fold), rangingfrom391Mbps inplatypus to947Mbps inOpossum.Thereduced
RY coding scheme was used in this case. Low complexity filtering was applied to
the mammalian intronic genomes by removing all features less complex than'-(
in complexity (where ' and ( are the mean and standard deviation of the feature
complexities in the feature set). High frequency features were removed by only
choosing those features with feature counts less than ' & ( (where ' and (
represent the mean and deviation of feature counts for all genomes in the set).
The time limiting step in the FFP method is feature counting. The longest intronic
genome, the Opposum, took "5 min to count and assemble the complete FFP
profile (l ! 18), using a 2.1 GHz CPU. Neighbor joining trees were constructed for
all lengths l (Fig. 6A, l ! 18 shown) and tree topologies were compared with the
RFdistancemeasure(Fig.6B).Toestablishsupport forthetopologyateach length
l we used a jackknife form of resampling, where we sampled 10% of the total
features after complexity filtering (without replacement) for a given l. Support
values in Fig. 6A were obtained from 10,000 replicates.
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